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Abstract. Field applications such as carbon sequestration drive the geochemistry of porous
media far from equilibrium in relatively short time scales. In these short timeframes, feedback
processes between flow and geochemical reactions (e.g., mineral dissolution-precipitation) that
take place at the pore scale are key to understanding the discrepancy between lab-derived
reaction rates and the continuum-scale reaction rates that are typically used in reservoir-scale
models. In the DOE Energy Frontier Research Center for Nanoscale Control of Geologic
Carbon (NCGC), pore-scale modeling is being used to gain insight into the scale dependence
of parameters such as reactive surface area or reaction rates as they affect CO2 sequestration,
with an objective of upscaling these parameters to continuum-scale models. Under the SciDAC-
e program we have partnered with the NCGC EFRC to develop a new capability for direct
numerical simulation of reactive transport processes associated with CO2 sequestration at
the pore scale. Building on high-performance computations of microscale flows in complex
geometries developed in the Chombo framework at LBL as part of the SciDAC APDEC project,
we use operator splitting to couple a new flow and scalar transport solver in Chombo with the
geochemical code CrunchFlow. The framework makes use of higher-order algorithms based
on adaptive mesh refinement and finite-volume methods. In current work we are focusing on
experimental validation of flow and reactive transport in 3D packed bed systems. Here we
discuss performance optimizations that enable high-resolution calculations of flow and reactive
transport in tightly packed capillary tubes using the new Chombo-CrunchFlow framework. We
demonstrate resolution of less than 4 microns for problems involving calcite dissolution and
precipitation.

1. Introduction
Geologic sequestration of CO2 is considered one of the viable approaches to mitigating the
climatic impact of greenhouse gas emissions [12, 6]. However, knowledge of the fate of CO2

injected into deep subsurface aquifers, especially after long time (thousands of years), is still
inadequate [2]. Geochemical transport modeling has served as a valuable predictive tool in
evaluating these scenarios [7]. Traditionally, the consideration of flow and reactive transport
in subsurface porous media has focused on treating the media as continuous domains with
macroscopic parameters such as hydraulic conductivity, porosity, reactive area, dispersion
coefficient and reaction rates. Flow is usually assumed to obey phenomenological laws, for
example, Darcy’s law [13]. It has long been realized that these parameters are scale-dependent
and mass transport limitations can introduce large deviations from volume-averaged processes
[4, 5]. The pore-scale variation of species concentrations is also suspected to contribute to
the “field-lab discrepancy” commonly observed between laboratory and field measurements [4].
Indeed, there has been growing interest in modeling reactive transport in the subsurface at the
pore scale.

Pore-scale modeling can be used to gain insight into the scale dependence of continuum
macroscale parameters by first resolving physicochemical processes that would otherwise not
be modeled in an effective medium Darcy approach and then upscaling these results to the
continuum scale. Popular approaches to pore-scale modeling include pore network models (e.g.,
[4]) and the lattice-Boltzmann method (e.g., [3]). Because of high-performance computing, well-
established numerical methods in computational fluid dynamics (CFD) such as finite-volume



and finite-difference methods have also become practical for direct numerical simulation of flow
and transport in the complex geometry of heterogeneous pore space. In this work, we present
results of such a CFDmethod. We have developed a methodology to simulate subsurface flow and
reactive transport at the pore scale by direct numerical simulation techniques based on advanced
finite-volume methods and adaptive mesh refinement. Specifically, we have combined the high-
performance simulation tools and algorithms for incompressible flow and conservative transport
in the software framework, Chombo [11, 10], with the geochemical package, CrunchFlow [8].

2. Chombo-CrunchFlow Model
For governing equations we consider the 3D incompressible Navier-Stokes equations
for incompressible flow plus the advection-diffusion-reaction equations for scalar species
concentration

ut + (u ·∇)u+∇p = ν∆u

∇ · u = 0 (1)
∂ck
∂t

+ (u ·∇) ck = ∇ ·Dk∇ck +R,

where u is the fluid velocity, ∇p is the pressure gradient, ck is the concentration of species k, ν is
the kinematic viscosity, Dk is the diffusivity of species k in the fluid, and R is the reaction rate
of species k. The equations are solved by a predictor-corrector method based on a projection
method [9, 1]. In our approach fluid-solid interfaces are represented as an embedded boundary on
a Cartesian grid and discretized by a finite volume method. Details of the flow and conservative
transport algorithm will appear in [10].

To incorporate the reaction rate term R in the equations and, specifically, model reactive
transport due to geochemistry, we couple the flow and conservative transport (advection-
diffusion) solver in Chombo to the complex geochemical reaction network module of CrunchFlow
using operator splitting. The conservative transport step advances the total component
concentrations, ck, subject only to the fluid CFL condition. These quantities are the sum of one
component species concentration and several secondary species multiplied by the corresponding
stoichiometric coefficient. They do not change as a result of equilibrium reactions. In
the geochemical reactive transport step, the aqueous reactions are assumed to take place
instantaneously, while mineral dissolution-precipitation are described kinetically. The reaction
pathways are defined as inputs to CrunchFlow. The resulting geochemical reaction network
is solved by Newton iteration. In the combined approach, the reaction is a “point-by-point”
calculation that scales with the Chombo computations. Compared with a fully implicit approach,
which solves the reaction network together with the conservative transport, operator splitting
greatly reduces the size of the problem, making it much more efficient computationally.

3. Performance Optimizations
The Chombo CFD solver for complex geometry has been previously optimized for high-
performance computations in terms of both speed and memory footprint [11]. Those
enhancements mainly included fast stencil operations using data pointers and integer offsets,
as well as efficient relaxation schemes for elliptic and caching techniques for updating in place.
For the current work we build off of the previous optimizations and discuss additional issues
and optimization techniques in the Chombo framework pertaining to simulation in very complex
geometries, especially packed bed systems with long aspect ratios.

We identified a performance bottleneck for flows in long, thin computational domains
(cylinder aspect ratio > 10) with tightly packed materials. The multigrid coarsening process
creates many irregular, or partially occupied, cells that can become multivalued at the coarsest



Figure 1. Capillary tube packed with spheres: a view of the geometry. The tube is 1 cm
long and 250 µm in diameter and is packed with 900 spheres, radii = 39.55 µm, for porosity of
0.52488.

levels. The bottom solver, BiCGStab (bi-conjugate gradient stabilized), which is preconditioned
by multigrid and also calls the relaxation step, therefore constantly accesses multivalued data
stored in the irregular partition of the Chombo data holder, EBCellFAB. The large number
of multivalued cells along with the iterative nature of BiCGStab resulted in excessively large
amounts of stack retrievals and high-order indirection access. A similar problem was first
reported in [11], where integer offsets and pointers to the data were employed to enable fast
stencil operations. We applied this stencilization to all remaining operations in the relaxation
scheme that had not been previously optimized. We also reconfigured the operations of
EBCellFAB to take advantage of the vector storage format and to transform the high-order access
to integer offsets. Profiling analysis revealed that the optimizations reduced approximately 90%
of the time it took to compute without the optimizations.

4. Results
To demonstrate the ability of Chombo to handle very complex geometries, we simulate flow in
a 1 cm long, 250 µm diameter capillary tube with a tight packing of 900 spheres, as shown in
Figure 1. The spheres each have the same radius of 39.55 µm and are randomly placed inside
the capillary tube. The spheres are allowed to touch each other, resulting in a tight packing
(porosity = 0.52488).

The test case is a calcite dissolution problem with 6 components and 10 species as in [5].
We model flow in a tube with a mean inlet velocity of 0.035 cm/sec. The solution pH is 5
and is undersaturated with respect to calcium. The packed spheres represent calcite grains.
The kinetic calcite dissolution-precipitation reactions are (units of k in mol m−2sec−1 at 25◦C,
reactive surface area is calculated from the geometry of the mineral-water interface) as follows.

CaCO3(s) + H+ ⇀↽ Ca2+ +HCO−
3 k1 = 0.89

CaCO3(s) + H2CO3∗ ⇀↽ Ca2+ + 2HCO−
3 k2 = 5.01× 10−4

CaCO3(s) ⇀↽ Ca2+ +CO2−
3 k3 = 6.6× 10−7

(2)

Figure 2 shows the x-z slice view of the x-velocity field. We observe higher velocities in the
microchannels that form in relatively sparse regions. Velocities are slower near the spheres and in
some areas may become negative immediately downwind of the spheres because of recirculation.
The quick flow paths are frequently obstructed by downstream spheres because of the tight and
random packing algorithm used. Figure 3 shows the total calcium concentration at steady state.
Inside the tube from the inlet at left, total calcium concentration increases as the calcite, which
is dissolved upstream, is transported downstream. At about two-thirds the length of the tube,
the total calcium concentration reaches equilibrium with the calcite spheres. We observe that
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Figure 2. Calcite dissolution in a tightly packed capillary tube at steady state: axial velocity
(cm/sec). The upper figure shows the x-z slice of the tube at the center of the tube. The lower
center figure shows a blow-up view of the segment from x = 0.4 to x = 0.6. Two slices (y-z
plane) on the sides show a cross-sectional view of axial velocities at x = 0.19 and x = 0.75
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Figure 3. Calcite dissolution in a tightly packed capillary tube at steady state: total calcium
concentration (mol/cm3). The upper figure is an x-z slice of the tube at the center of tube. The
lower center figure is a blow-up view of the tube from x = 0.0 to x = 0.2. Concentration fingers
are noticed in various locations in the tube.

the total calcium concentration is essentially an one-dimensional feature except for the short
region near the inlet. Closer examination of the figure reveals that in the first one-third of
the tube there are dissolution fingers that originate from the spheres. However, these fingers
quickly disappear when they encounter downstream spheres, as a result of the enhanced mixing
by the meandering flow paths, and possibly diffusion. In this scenario, the pore-scale model
does not behave very differently from an one-dimensional macroscopic model. Figure 4 shows
the close agreement of the cross-sectionally averaged total calcium concentrations between the
Chombo-CrunchFlow pore-scale model and CrunchFlow alone, which solves reactive transport
on the contiuum-scale using the volume porosity and surface area calculated by the pore-scale
model.

With regard to performance, the calcite dissolution problem is simulated on a Cartesian grid
with 2560×64×64 cells using 512 processors on a Cray XT4. Mesh spacing is 3.9 µm. A fluid
time step takes 20 seconds CPU time; a transport step (conservative + reactive) is 1/3 of fluid.

5. Conclusions
We have coupled the Chombo flow and scalar transport solver with the geochemical code
CrunchFlow to simulate flow and reactive transport at the pore scale. This high-performance
simulation capability provides an alternative modeling methodology for very complex geometries
and therefore has the potential to offer new insight into emergent processes that occur at the
pore scale in geologic carbon sequestration. The code has been optimized to run on massively
parallel machines. We used the coupled model to simulate calcium carbonate dissolution in
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Figure 4. Calcite dissolution in a tightly packed capillary tube at steady state. Comparison of
cross-sectionally averaged calcium concentration between the pore-scale and macroscopic models.

tightly packed capillary tubes with 4 µm resolution. We demonstrated that the model agrees
well with the macroscopic model for this particular test case. The need for the simulation
of calcite dissolution in a high aspect ratio capillary tube is driven by the requirements of
experiments designed to validate the pore scale model. The optimizations and the 4-micron
resolution we achieved are significant because they will allow us to perform direct simulation
from image data obtained at this resolution by x-ray tomography from validation experiments.
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